In modern times, the use and control of tiny matter (nanotechnology) has become increasingly important. It has many uses from developing sports equipment to medical applications, to uses within the textile industry and even helping with energy. There are, however, some concerns about its use. The tiny matter is referred to as nanoparticles. These particles are measured in nanometers (nm). A nanometer is one billionth of a meter (0.000,000,001m). Nanotechnology is concerned with the use and control of structures that are 1-100 nanometers in size.
Some of these nanoparticles occur naturally, for example in volcanic ash. Some occur by accident, for example during the combustion of fuels. Many occur by design. However, nanotechnology has a number of interesting potential applications in areas.
Medicine
Things behave differently at the nanoscale. An excellent example is the fact that gold actually reflects red light at the nanoscale. This has resulted in the design of experimental systems that kill cancerous cells with normal visible light, but leave normal cells unharmed. Also, body tissue can be reproduced or repaired using nanotechnology, which could eventually develop into treatments to replace or repair organs.
Energy
Nanotechnology could be harnessed to consume extremely low amounts of energy, making it a vital alternative to current methods of supplying power.
Textiles
Nanotech is already at use in consumer products ranging from stain-resistant and anti-wrinkle textiles in clothing, to cosmetics. If keeping clothes clean isn’t enough, ‘smart clothing’ could monitor your heart rate and other vital signs.
Filtration
The relationship between the volume and surface area of some particles can change at nanoscales in such a manner that they can end up with more ‘outside’ than ‘inside.’ (If you’re a “Dr. Who” fan, think of it as the opposite of a TARDIS.) The advantage is that the more surface you have, the more reactions you can have on that surface. This can allow new kinds of filtering, such as water for drinking or light for solar energy.
Published by