The human body works in remarkable ways. Our skeleton creates a base for muscles, ligaments and joints which make it easier for us to perform intricate tasks. Although robots can do many of the same things humans can, their ability to maneuver is limited in several ways. Biohybrid robotics is a field that is rapidly expanding and consists of equipping robots with biological tissue. This will enhance their maneuvering abilities and the tasks that they can accomplish, increasing their functions exponentially. Researchers from The University of Tokyo Institute of Industrial Science have recently created a biohybrid robotic finger with the ability to bend itself up and down. They published the results in Science Robotics recording that the finger remained functional for more than a week.
Their creation began with the construction of the finger’s skeleton using 3D-printed resin, with a joint and anchors for the tissue’s attachment. Electrodes that would stimulate the living muscle, causing it to contract, were the skeleton’s final addition. The muscle was made using myoblasts, stem cells with the ability to mature into several types of muscle cells. These were housed in hydrogel sheets that had holes from which they could be attached to the skeleton. To encourage muscle fibre to grow between the anchors, some striped structures were added. The muscles in the biohybrid functioned similarly to those in our body, as a pair, with one contracting while the other expands. This prevented them from shrinking or breaking down.
Once biorobotic construction and its range of motion has been mastered, the possible uses are endless. Currently, a robot’s initial movements are jerky, preventing them from being able to undertake specific tasks. The inclusion of muscle tissue would result in smoother, steadier overall movements. Scientists are planning to use these biorobots for more detailed exploration of the human body, as well as to enhance our medical capabilities. This could be partially accomplished by performing tests on the biorobots, instead of humans. In addition, they would increase the manufacturing ability of robots, currently limited due to intricate parts and assembly necessary, and their ability to monitor certain environments.
Despite the great benefits of biorobotics, the technology does have its limitations, including the need to feed these living cells. Until a way to do this can be found, the biorobots would have a limited lifespan. The surrounding temperature would also affect the length of time they could survive for, as well as their operating capacities. As the field expands, these limitations are expected to be improved upon, and it is almost a certainty that biorobots will eventually become a part of our daily lives.
Published by