Fighting HIV – Using the Cells it Affects

Methods to treat HIV (Human Immunodeficiency Virus) have improved greatly since the virus first began to affect humans, in the late 1980s. A few of those infected never developed full-blown AIDS, but for the majority, the inevitable result would have been wasting away due to an inability to fight diseases. Treatment for HIV has improved continuously, and the disease is no longer considered to be fatal once the affected person receives treatment. These treatments have at least two disadvantages, however: they would need to be continued for the duration of the individual’s lifetime and there are also uncomfortable side effects. Researchers are confident that there will eventually be a cure for HIV, and they continue to do tests that may take us closer to finding one.

Scientists from The University of Massachusetts Medical School have published an article in Nature, which states the possibility of decreasing the spread of HIV using cells which occur naturally in our bodies. Ironically, these are the same cells which the virus attacks. HIV breaks down the immune system by infecting and destroying CD4 positive ‘helper’ T-cells.

These white blood cells are vital to fighting off infection, which is why HIV is so efficient at wrecking havoc in the immune system. After affecting some of the cells, the virus uses these to travel through the body and infect other CD4s. T-cells transport these by settling in between lymph nodes, and others areas, that the free virus would be unable to reach.

The researchers found that there are proteins in the T-cells in our immune system which naturally fight HIV. SERINC5 and SERINC3, two host cell proteins, are able to stifle HIV-1 by greater than 100-fold. The HIV-1 genome has nine genes which can be replicated in the host cell, which then produce virions (the infectious part of the virus). They begin a cycle of infection by looking for new cells to infect. One of these, NEF (which is a key part in the development of AIDS) helps the process by blocking the SERINC proteins, so that they are unable to reach the cell’s surface. This means that they will no longer become a part of the newly formed virions. Developing a drug to restrict NEFs would allow the system to fight HIV, as the virions would then include SERINC3 and SERINC5 making them unable to infect new cells. This process could then be applied to other infectious viruses with NEF proteins.


Improved Photosynthesis – Steps Towards Decreasing World Hunger

As the world’s population continues to increase, the United Nations has estimated that the amount of crops that are currently produced will be insufficient to meet the associated rising food demand. The organization has also speculated that by 2050, many of the world’s poorest nations will be unable to feed the majority of their citizens. A collaboration between scientists at The University of Illinois and The University of California, Berkeley, has shown that it may be possible to create plants that will produce a greater output, and help feed these populations. The researchers genetically modified organisms to improve the rate at which they photosynthesize, reducing their recovery time and increasing their yield.

Photosynthesis is the method by which plants use carbon dioxide and sunlight to produce sugars and oxygen. Like animals, they are susceptible to sun damage but are able to shield themselves using a process known as nonphotochemical quenching (NPQ). After ideal conditions for photosynthesis resume, these plants can take up to 1/2 an hour to relax the NPQ process. During this period, light energy is lost as heat. Depending on the temperature and the type of plant, this may result in a decrease in productivity by up to 30%. The researchers aimed to devise a method which would cause the plants to reduce the amount of time taken to relax NPQ and, therefore, increase their efficiency.

The team were able to identify three proteins that are responsible for stopping NPQ. They speculated that plants with increased numbers of these proteins would be able to relax the process faster. The theory was tested using tobacco, because of the ease with which these plants are transformed and their ability to produce the layers of leaves necessary. Those that had additional proteins added weighed between 14% and 20% more than other tobacco plants. Many crops such as rice, soybeans and wheat, also produce layers. This suggests that the same method can be applied to these foods, increasing their yield. Even though the crops would be more difficult to modify, researchers are confident that this next step in the experiment can be achieved fairly quickly.

Once it has accomplished, both lab tests and field experiments will need to be performed to determine how the modified plants will respond to stresses, such as droughts and floods. After this the technology will be ready for use on a large scale basis and may be given to farmers, and other agricultural producers. Researchers not associated with the experiment also believe that this modification may be the beginning of the second ‘green revolution,’ and would significantly reduce world hunger.

The Future of Factory Robots – Decreasing Cost while Increasing Efficiency

The use of robots in their production line has been proving to be remarkably profitable for many businesses. One of the reasons for this is because it immediately decreases one of their largest regular pay-outs, labor costs. This means that factories, and other businesses with many employees, have increased their use of automation by adding robots to their labor force. The machines have also proven to be significantly more efficient than human labor. Instrumental in this change are many Chinese companies, which are responsible for a large part of the world’s production. As a result, they have been investing significantly in finding mechanical forces that will decrease the cost of labor, as well as continue to boost productivity levels.

Shentong Express, a large-scale shipping company, has cut its labor costs in half by making sorting robots a permanent part of its labor force. The robots are made by Hikvision, and are responsible for sorting parcels as they transition through the system. Each machine can sort at least 200,000 parcels per day and, since they are self-charging, can work around the clock. This has also facilitated an improvement in the company’s efficiency by 30%, as well as increasing the accuracy of sorting. Even though the robots are currently only a part of the work force in two of the company’s Hangzhou branches, there are plans to expand their use to all their largest branches.

In 2016, the output using industrial robots increased by over 30%, fuelling the shift from human work forces to automated ones. Another Chinese company, Changying Precision Technology, which manufactures mobile phones, automated 90% of their work force. This meant that 650 human workers were replaced with 60 robots, across 10 production lines. The company’s productivity has subsequently increased by 250%, and defective products decreased by 80%. These results have caused China to develop a long-term plan which involves using robots as a significant part of their labor force, increasing their number to 100,000 by 2020.

Even though large-scale businesses embrace these changes, many individuals are worried about the considerable number of people that will lose their jobs due to increased levels of automation and technological advancements. It is estimated that within the next 20 years, 137 million workers in five Southeast Asian countries will be replaced with robots or other automated systems.

There are other changes that automation will bring to business worldwide. Many companies in first world countries have previously outsourced their production, to others that are less developed with low cost labor forces. Automation means that production can be transferred to the home country, since labor costs would now be at a minimum. This would have detrimental effect on the economy of many third world countries.

Internationally, the use of automated services must be embraced, without taking things to the extreme. Viable solutions will also need to be found to control the expected rise in the unemployment rate. One suggestion is to have a universal basic income, which would expand economies and limit unemployment.

Science and Disease – Curing Diabetes with a Pill

Type 2 diabetes is a metabolic disorder that develops when the body becomes unable to process insulin correctly. Insulin is the hormone that is responsible for regulating the amount of sugar in our bloodstream. In the first stages of the disease, the body overproduces the hormone in an attempt to regulate the system. After a while the receptors will burn out and stop producing the insulin altogether.

People develop diabetes based on genetics, as well as lifestyle factors, that affect the way that their system functions. It is most common in those that are middle aged, or older, and medical practitioners believe that almost 1/3 of the population will develop type 2 diabetes due to poor eating habits and a lack of exercise. Medications currently used to treat diabetes, filter the excess glucose produced from the bloodstream. Top medical doctors, and nutritionists, believe that Type 2 diabetes is completely reversible, however, and scientists are trying to find an easy, reliable method of doing this.

A team of researchers from the University of California, have recently developed a drug which can restore insulin sensitivity in people with diabetes. It would be administered via a single pill taken daily, and works by inhibiting LMPTP (low molecular weight protein tyrosine phosphatase) which contributes to the reduction in cell sensitivity to insulin. Decreasing the amount of the enzyme in the body, causes the cells (especially those in the liver), to become receptive to insulin once again. This then restores the body’s ability to regulate blood sugar levels, ultimately reversing the condition.

The researchers used lab mice to conduct their experiment. The rodents were initially fed a high-fat diet, causing them to become obese and subsequently develop high blood glucose levels. After this they received a dose of the drug daily, and their insulin levels were successfully restored. Researchers did not notice any adverse side effects develop from the use of the medication. Further tests will still need to be conducted to ensure that the drug is completely safe for human use. The team, however, are confident that it will be a huge step in reversing diabetes by simply taking a pill.

The concept of reversing diabetes is not a new one, and has previously been achieved using a combination of drugs, a strict diet and a regular exercise regime. Scientists at Cornell University have also found that probiotic pills, containing live bacteria, can help reverse the effects of Type 2 diabetes by ‘rewiring’ the body. The probiotic pill was also tested on rodents, and managed to shift the control of the body’s blood sugar levels from the pancreas (which normally controls glucose levels within the body) to the upper intestine. By shifting where the blood sugar levels are controlled, scientists found that the animals’ insulin levels increased by up to 30%. They believe that a higher dose of this probiotic pill may become a cure for both Type 1 and Type 2 diabetes.

Autonomous Farming – The Future of Food Production

Having technology which can run itself makes production quicker and easier in all areas, including farming. The autonomous tractor has recently been displayed by Case IH, and is designed with safety features that make it possible for the vehicle to be operated remotely. The world’s population is constantly increasing and with it the need for more food. The autonomous tractor would be able to maximise the efficiency of fields and growing produce, by working 24 hours per day and in adverse weather conditions.

Case IH has played a major role in the development of farming with their introduction of a form of GPS, in the 1990s, which showed the amount of produce that each field yielded. This system has been improved with technological advancements, and is still used by farmers to show where planting adjustments need to be made.

More recently, self-steering systems have been included in farming vehicles to decrease the amount of overlapping and missing areas that occurs during planting crops. This minimizes wastage and workload, yet still requires qualified drivers to operate. Finding them is becoming more difficult, as the hours can be long and tedious. Autonomous machines can be used alongside existing ones, significantly decreasing the amount of labor needed to run a farm.

As they would be remotely controlled, the tractors have been designed without a cab. The vehicles are also able to warn operators of possible threats, by stopping when there is an item that might damage them in the vicinity. The operator is alerted, and will then decide whether it should continue or change paths. The tractors are programmable, and can make their way to and from different fields. Their progress can be viewed through the mapping system, controlled by an app, or remotely accessed via ‘tractor view’ through its feed.

Developers are working on ways that the vehicles will be able to interpret external data, such as weather conditions, and use it to decide what is the best time to plant and reap crops, independent of human input. This attention to detail would save on wastage, as it would control the planting of the crops as well as weeding between rows to reduce the use of pesticides.

The tractor’s designers are currently working with farmers to test the technology. They are demonstrating the way in which its use will affect all aspects of the business, including labour and farm management. Other autonomous features will be integrated into current farm vehicles, and these can be adapted for use on small as well as large-scale farms. As the technology becomes more readily available, costs are expected to decrease and more areas will be able to use it for widespread food production. The current expectation is that this will help to decrease hunger worldwide.

Amazing Algae – Survival in Space

Earth’s atmosphere is designed for the survival of millions of organisms. Once most of these leave the planet’s protective covering, however, they would perish within minutes, if not seconds. Scientists are always looking for ways that will allow us to survive in the harsh environment of space, to facilitate our universal expansion. As they have discovered many times in the past, sometimes the smallest things provide the biggest answers.

shutterstock_385473715One of the simplest plants in our atmosphere is algae, which has proven its resilience repeatedly due to the extreme earthly environments in which they can exist. As a part of the Biology and Mars Experiment (Biomex), scientists decided to put the plant’s durability to the test. They released algae into the universe next to the International Space Station, located outside of the earth’s perimeter, for a total of 16 months.

Biomex is a project aimed at figuring out the possibility of survival on the surface of one of Earth’s closest neighbours, Mars. Here the temperature is extremely low and there is almost no protective covering from the sun’s harmful UV rays. The conditions that the algae had faced in space would have been impossible to replicate on Earth, and would not have provided the most accurate results.

shutterstock_320049485-1Even though the plants were exposed to extreme temperature changes, and both cosmic and UV radiation, the algae were retrieved alive and many of the strands even thriving. Further tests of the species will be crucial to future space travel, as they will demonstrate some of the conditions that may be faced by astronauts and show possible ways to overcome them. Algae might also be used as a source of food for these explorers, as it can be eaten when grown in large quantities. The plant can be transported to Mars, and many scientists believe it might be the key to breathable air on the planet, as algae survives by taking in carbon dioxide and releasing oxygen, which is essentially to human and animal life.

The plants survival also supports the theory that organisms can travel around the universe on comets, asteroids and other moving particles. When one of these crashes into a planet that has life on it, organisms become trapped in it and are carried to the particle’s next destination. The theory that life on Earth developed in this way has been proposed and, even though it doesn’t provide conclusive evidence, the algae’s survival shows that this is possible.